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Abstract: In presented report, a nonlinear model of 3D motion of a Pilatus PC-9M aircraft is considered. 

The system of ordinary differential equations describing the aircraft motion is solved in GNU Octave environment 
by a 4th-order Dormant-Prince explicit method with an adaptive step, ode45, dopri. Experimental data for stability 
and control derivative values are used in the model. The developed code is validated with exact solutions. Several 
3D maneuvers of the aircraft are simulated by the model. The results are presented graphically and analyzed. 
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Резюме: В настоящия доклад е разгледан нелинеен модел на пространственото движение на 

самолет Pilatus PC-9M. Системата обикновени диференциални уравнения, описваща движението на 
самолета, е решена в среда GNU Octave по явен метод Dormant-Prince от 4-ти ред с адаптивна 
стъпка, ode45, dopri. В модела са използвани експериментални данни за стойностите на производните 
по устойчивост и управляемост. Разработеният код е валидиран с точни решения. Чрез модела са 
симулирани няколко пространствени маньовъра на самолета от висшия пилотаж. Резултатите са 
представени графично и анализирани. 

 
 

Introduction 
 

Aircraft non-linear flight dynamics focuses on how aircraft behaves under conditions where the 
assumptions of linearity (small perturbations and linear relationships between forces and motions) no 
longer hold. It is crucial for predicting the behavior of aircraft in complex flight conditions. Unlike linear 
models, nonlinear ones consider full set of equations of motion without simplifying assumptions. 

 
Materials and Methods 
 

Consider following system ODEs for linear and angular momentum conservation (body frame) 
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where F = [X, Y, Z]T, M = [L, M, N]T are vectors of externally applied forces / moments, v = [u, v, w]T, 
ω = [p, q, r]T stand for linear / angular velocity vectors, m is rigid body mass (constant), I is inertia 
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tensor describing mass distribution within the rigid body. Vector ω is angular velocity vector of a body-
fixed reference frame relative to the inertial one. 

Euler angular rates [dφ/dt, dθ/dt, dψ/dt]T might be expressed with regard to body angular rates 
ω = [p, q, r]T, [1], as follows 
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The dψ/dt equation has a singularity at θ = ± π/2 rad (gimbal lock) which is the reason why 

quaternion propagation is preferred to propagating Euler angles directly. Quaternion propagation is a 
method used to describe the object attitude in three-dimensional space over time. The method is more 
computationally efficient. It involves integrating the quaternion’s differential equation with respect to 
time so as to reflect the airplane changing orientation. Following Shibata, the general form of 
quaternion propagation equation, neglecting the Earth rate in local frame, is, [2] 
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where ω = [p, q, r]T are angular rates in body reference frame, q = [q0, q1, q2, q3]T are quaternion 
components. Euler angles yaw ψ, pitch θ, roll ϕ are obtained according to (sequence ZYX only) 
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Body fixed linear velocities might be transformed into local level reference frame after 
multiplying by a transformation matrix. The matrix might be derived, according to Kuipers, from 
quaternions as follows, [3] 
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Aerodynamic coefficients are computed with regard to stability and control derivatives, [1]: 
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Externally applied aerodynamic forces and moments are computed with the help of widely known 
formulae including values of aerodynamic coefficients and dynamic pressure. Reference lengths used 
are mean aerodynamic chord and wingspan. Reference area is wing planform area. The airplane 
weight is defined in local level reference frame as G = m*[0, 0, –9.81]T. It has to be transformed to 
body reference frame by multiplying by transformation matrix (5). In formulae (6), characteristic length 
c is equal to the mean aerodynamic chord. 

Snowden and Keating et al., [4], [5] give experimental data about stability and control 
derivatives for longitudinal and lateral motion of PC 9/A in cruise configuration, Table 1. 

 
  Table 1. Mass parameters, stability and control derivatives (3-2-1-1 maneuver at 5000 ft, maximum likelihood) 
 

Parameter Value Units Parameter Value Units Parameter Value Units 
Ixx 2505.9 kg.m2 MAC 1.65 m Clp –0.508 1/rad 

Iyy 6622.2 kg.m2 Weight 1866.1 kg ClδA –0.1083 1/rad 

Izz 8467.1 kg.m2 CD0 0.0118 – Cmα –0.4412 1/rad 

Ixy 49.0 kg.m2 CL0 0.115 – Cmq –14.4 1/rad 

Ixz 196.9 kg.m2 CYβ –0.7735 1/rad CmdE –1.2319 1/rad 

Iyz 3.0 kg.m2 CYδR 0.1885 1/rad Cnβ 0.0808 1/rad 

S 16.29 m2 CLα 5.1222 1/rad Cnr –0.201 1/rad 

Wingspan 10.125 m CLδE 0.3151 1/rad CndR –0.1157 1/rad 

 
Air density variation with altitude is described by the barometric formula widely available, see 

for example [6]. However, during simulation, the altitude varies slightly which is why density is 
assumed constant ρ = 1.293 kg/m3. This approach simplifies the computational procedure. Lift 
coefficient at zero angle of attack is assumed CL0 = 0.115. Additional condition for longitudinal static 
stability is CM0 > 0 i.e., airplane can be trimmed at positive angle of attack. In current case CM0 = 
0.01 (lack of data). Also, angle of attack α = atan2(w,u), angle of sideslip β = asin(v / sqrt(u2 + v2 + w2)) 
From table above and the chain rule we find ∂Cm/∂CL = (∂Cm/∂α) / (∂CL/∂α) ≈ –0.086 times mean 
aerodynamic chord is the static margin. Savov, Marinov, [7] reported zero lift drag coefficient CD0 = 
0.0118 @ M = 0.4; CD0 = 0.0123 @ M = 0.5; CD0 = 0.0127 @ M = 0.6. 

After computing external forces and torques, system (1) is integrated in GNU Octave 

environment by ode45 solver adopting Dormant – Prince method with adaptive time step. 

 
Validation 
 

Developed source code was put to the test with an exact solution to following problem in rigid 
body dynamics. Given a projectile is being fired at angle α and initial velocity v0, Fig. 1. The force of 
gravity G = –mg and the force of air resistance R = –kmv act on the projectile. Find a law describing 
the projectile motion! Adopted notations and units of measurement are m – mass, kg; v – velocity, m/s; 
g – Earth gravity acceleration, m/s2; k – proportional coefficient, 1/s. 

 

 

Fig. 1. Validation case according to problem statement 
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Equations of projectile motion according to Fig. 1 are: 
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These equations are independent of each other, they can be solved separately, and they have the 
same characteristic equations with real distinct roots, i.e. 
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Consequently, the general solution takes the form: 
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where u = A*t is a particular solution. After replacing the particular integral in second equation of the 
system (7), we get A = –g/k, i.e., u = –g/k*t. Finally, the complete solution is 
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In order to find constants C1..4, it is sufficient to plug following initial conditions into system (10): 
 

(11) 0 00 0 0 cos sint x y x v y v       

 
Identical results might be obtained using Symbolic package available in GNU Octave, see Appendix. 

Initial conditions (11) were plugged into model being developed, system equations (1) and test 
problem (7) to perform a simulation of projectile motion and compare obtained solution with exact one. 
The two results match exactly, Fig. 2. 

 

 

Fig. 2. Validation case results: numerical solution (left) and exact one 

 
In addition, the rotation matrix (5) has been put to the test by MatLab function quat2rotm(q) 

for validation purposes. Again, the obtained results match. 

 
Results 
 

Consider following test cases. PC-9M is performing a flight for 30 seconds at initial (cruise) 
speed of 140 m/s ≈ 272 knots and yaw angle of –180 deg. The airplane is experiencing thrust (both 
propeller and jet, [8]) of 6100 N within [0; 30) s interval. A deflection of –2.5 deg is applied to elevator 
within [5; 30) s interval. Euler angles yaw, pitch, and roll are depicted in Fig. 3, so is the flight path. 
The figure caption is a ternary condition operator. The airplane is performing a Loop maneuver. 
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Fig. 3. Loop: dEle = (5 ≤ t < 30 s) ? –2.5 : 0 deg 
 

 

In following test case a deflection of –1 deg is applied to aileron within [5; 6) s interval, –3 deg to 
elevator within [6; 15) s to elevator, –2 deg to elevator within [15; 18) s, and +2 deg to aileron within 
[15; 18) s. The airplane is performing a Chandelle maneuver. 
 

 

 
 
 

Fig. 4. Chandelle: dAil = (5 ≤ t < 6 s) ? –1 : 0 deg;         dEle = (6 ≤ t < 15 s) ? –3 : 0 deg; 
        dEle = (15 ≤ t < 18 s) ? –2 : 0 deg;   dAil = (15 ≤ t < 18 s) ? +2 : 0 deg 
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In following test case, a deflection of –15 deg is applied to elevator within [5; 20) s interval, –2.5 deg to 
aileron within [0; 20) s interval, thrust is cut to idle, initial (stall) speed of 40 m/s (a recoverable spin). 

 

                            
Fig. 5. Spin: dEle = (5 ≤ t < 20 s) ? –15 : 0 deg; dAil = (0 ≤ t < 20 s) ? –2.5 : 0 deg 

 
Conclusion 
 

Data about drag coefficient CD are somewhat rare, so is pitch moment coefficient at zero 
angle of attack CM0. In paper [7], values of zero lift drag coefficient CD0 at different Mach numbers 
are reported. Also, in paper [4], Snowden et al. provide experimental data about normal force CN0 @ 
α = 0 (body frame) with regard to values of derivative ∂CN/∂q. 

Benefits resulting from applying the non-linear solver are significant. In linearized case, the 
longitudinal motion is frequently decoupled from longitudinal and lateral in advance and thus various 
aerodynamic and gyroscopic cross-couplings such as yaw/roll and pitch/yaw are neglected. The 
outcome of expanding derivatives by Taylor series solely holds within small disturbances about initial 
conditions. For these reasons, it is possible to compute a three-dimensional motion at critical angles of 
attack and beyond (recoverable spin, Fig. 5) merely with the aid of a non-linear flight dynamics model. 

 
Project source code was developed in GNU Octave v.9.2.0 environment with free license. 

The code may be downloaded from github.com, [9]. 
Obtained numerical results have not been validated during actual flight on PC-9M. Use the 

results at your sole discretion! 
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Appendix. Source code in GNU Octave for finding exact solution of system (7) 

>> pkg load symbolic 

>> syms x(t) y(t) k g 

>> odex = [diff(x,t,2) + k*diff(x,t,1) == 0]; 

>> odey = [diff(y,t,2) + k*diff(y,t,1) + g == 0]; 

>> solx = dsolve(odex); 

>> soly = dsolve(odey); 

>> solx 

solx = (sym) 

           -k*t 

  C1 + C2*e 

>> soly 

soly = (sym) 

           -k*t   g*t 

  C1 + C2*e     - --- 

                   k 

>> 

 


